Culegere Online pentru Evaluarea Nationala la Matematica

 

Prof. Andrei Octavian Dobre

 

www.MateInfo.ro

 

Aceasta carte nu poate fi publicata pe un alt site si nu poate fi folosita în scopuri comerciale fara acordul scris al autorului

 

 

Varianta 1

Clasa a VIII-a

 

Se acorda 10 puncte din oficiu.Timp de lucru:2 ore.

 

Subiectul  I  48 puncte  (Completati doar rezultatele)

 

1)    a) Solutia ecuatiei |x-4|= -1 este….

b) Solutia in multimea numerelor reale a inecuatiei |x-5|≤ 0 este ….. .

      c) Solutia in multimea numerelor intregi a inecuatiei |x-1|≤ 1 este multimea….

2)  a) Solutia sistemului  este...

     b) Solutia ecuatiei |2x-6|= 6 este …

     c) Solutia reala a inecuatiei x+2< 2 este …     

 

3. Fie functia f: {-4; -1; 0;1; 3} , f(x) = -x + 1.

     a) Multimea valorilor functiei este{……….}.

     b) Rezultatul calcului f(-1) +2f(1)  f(0) este egal cu……. .

     c) Intersectia reprezentarii grafice a functiei cu axa ordonatelor este punctual M(…,…).

 

4)  Fie ABCDA’B’C’D’ un cub.

   a) Masura unghiului format de dreptele C’B si AD este egala cu …. .

   b) Masura unghiului format de dreptele AB si D’D este egala cu….. .

   c) Masura unghiului format de dreptele AC si AD’ este egala cu….. .

 

Subiectul  II   42 puncte (Se cer rezolvari complete)

1. Fiind data functia f : R  R, f (x) = 2x + 5, stabiliti care dintre punctele urmatoare apartin graficului functiei: A( 3; 1), Bsi C( 0; 3).   

 

2. Fie expresiile: E(x) =    si

F(x) = E(x) (x+2), unde x -{-2;-1;0;1}.

a)      Aratati ca E(x) = .

b)      Calculati F(2) + F(3) + …. + F(20).

c)      Aflati Z astfel încat E(x)Z.

 

3. a)Desenati un paralelipiped dreptunghic

Paralelipipedul dreptunghic ABCDABCD’ are AA’ = 3  cm, AB = 6 cm  si BC = 3 cm.

Fie punctul O mijlocul segmentului BD s i punctul M mijlocul segmentului AB.

b) Demonstrati ca dreptele OM  si AB sunt perpendiculare.

c) Calculati masura unghiului determinat de dreapta D’B s i planul (ABC).

d) Calculati valoarea tangentei unghiului determinat de planele ( ADM )  si (DDM ) .

 

 

 

 

 

 

Varianta 2

Clasa a VIII-a

 

Se acorda 10 puncte din oficiu.Timp de lucru:2 ore.

 

Subiectul  I  48 puncte  (Completati doar rezultatele)

 

2)   a) Solutia in multimea numerelor reale a ecuatiei |x-2|=3 este….

b) Solutia in multimea numerelor reale a inecuatiei |x-2|≤ 3 este intervalul….. .

c) Solutia in multimea numerelor intregi a inecuatiei |x-2|≤ 3 este multimea…. .

2) a) Solutia ecuatiei 3x+ 9 = 0 este …

     b) Daca 4x  8 = y si x=2 atunci y este ...

     c) Solutia sistemului este perechea ...

3) a) Fie  f, g : R  R, f (x) =  2x + 5 si g(x) = Solutia inecuatiei f(x) ≤ 2g(x) + 1 este intervalul……..

b) Daca f : A  R,  f(x) = 2x +3 si Im f = { -1; 1; 3; 5}, atunci Gf = {……..}

c) f : R  R, f (x) = 2 x  + b si f(3) = 8, atunci b = …………

 

 

4)  Fie ABCA’B’C’ o prisma triunghiulara regulate dreapta, cu AA’ = 9 cm si AB = 6 cm.

 a) Distanta de la C’ la dreapta AB este egala cu…….. .

 b) Cosinusul unghiului plan corespunzator diedrului format de planele (C’AB) si (ABC) este egal cu…. .

 c) Distanta de la punctual C la planul (C’AB) este egala cu….. .

 

Subiectul  II   42 puncte (Se cer rezolvari complete)

1. Fie functia f : R  R, f (x) = ax + b, unde a si b sunt numere reale.

a) Determinati a si b stiind ca f( 1 ) =  5  si f(2) = 1.

b) Pentru a = 2 si b =  3   reprezentati grafic functia într-un sistem de coordonate perpendiculare.   

 

2. E(x) =   

 

a)      Aratati ca (x+2)(x-2) = 2x2+x-6

b)     Aratati ca E(x) = pentru orice xR\{-5;-2; ;5}

c)      Aflati valorile întregi ale lui a pentru care E(a) Z

 

3.a) Desenati o piramida triunghiulara regulata

 

SABC este o piramida  triunghiulara  regulata , de baza  ABC. Punctul M este mijlocul muchiei BC,  masura unghiului determinat de dreptele SM si SA este egal  cu 90o   si SA = 6  cm.

b) Aratati ca  triunghiul SAC este dreptunghic. c) Calculati volumul piramidei SABC .

d) Fie punctele A si B mijloacele muchiilor SA si respectiv SB , iar P si Q proiectiile punctelor

A’ si respectiv B’ pe planul (ABC). Calculati aria triunghiului CPQ.

 

 

                                       

 

Varianta 3

Clasa a VIII-a

 

Se acorda 10 puncte din oficiu.Timp de lucru:2 ore.

 

Subiectul  I  48 puncte  (Completati doar rezultatele)

 

1) Fie ecuatiile 2x +7-3(x+1) = 5 si ax-2 = 2a, unde a este un numar real diferit de zero.

a) Solutia ecuatiei 2x+7-3(x+1) = 5 este egala cu…. .                                            b) Daca ecuatiile au aceeasi solutie, atunci a este egal cu….. .

c) Pentru a = -2 solutia ecuatiei este….. .

 

2) a) Daca f : R  R, f (x) =  2 x  3, atunci f ( 2) = …………

    b) Daca f : R  R, f (x) = a x + 7 si A ( 3; 1 )  Gf , atunci a = …….

    c) Daca f : R  R, f (x) = x  4 si A( 7; y )  Gf , atunci y = ………….

 

3) Fie inecuatia 3-2x ≥ 4-x.

  a) Multimea solutiilor inecuatiei este intervalul ……………… .

  b) Daca x  [-5,2], atunci multimea solutiilor intregi ale inecuatiei este intervalul…..

  c) Daca x  [-5,2], atunci multimea solutiilor intregi ale inecuatiei este {……}.

4) a) Aria unei fete laterale a unui tetraedru regulat este de cm2 . Suma muchiilor tetraedrului este de ………cm.

b) O piramida cu volumul de 240 cm3 si aria bazei de cm2 are înaltimea de ………cm.

c) Aria totala a unei piramide hexagonale regulate care are latura bazei de 12 cm si apotema de cm este egala cu ……cm2 .

 

 

Subiectul  II   42 puncte (Se cer rezolvari complete)

1.a) Demonstrati ca (x- )2+(y-)2=x2+y2-2x-2y+5, pentru oricare x,y R

b) Rezolvati sistemul:

 

 

2. Fie  f ; g : R  R, f (x) =2x + 6 si g(x) =  x  4

a) Aflati coordonatele punctului de intersectie a celor doua grafice.

b) Reprezentati în acelasi sistem de coordonate cele doua functii.

c) Aflati aria triunghiului determinat de cele doua grafice si axa absciselor.

 

3. a) Desenati o piramida triunghiulara regulata

Piramida patrulatera  regulata  SPACE , de baza  PACE , are muchia bazei PA =12 cm si înaltimea

SO = 6 cm.

b) Calculati volumul piramidei SPACE .

c) Stiind ca  punctul M este mijlocul muchiei SP, aratati ca  dreapta MO este paralel  cu planul (SEC) .

d) Calculati masura unghiului determinat de planele (SPC) si (SAC)

 

 

 

 

Varianta 4

Clasa a VIII-a

 

Se acorda 10 puncte din oficiu.Timp de lucru:2 ore.

 

Subiectul  I  48 puncte  (Completati doar rezultatele)

1.    a) Multimea A = {x | |x-3|≤ 2 este egala cu….. .

b) Solutia sistemului  

c) Solutia ecuatiei  - 1 = 2 este egala cu…

2) a) Solutia reala a ecuatiei  3(x+1)=9 este egala cu ………                                                                       

     b) Daca  3x - 1≤ 4  atunci  numarul real x se afla in intervalul……..                                                      

     c) Daca  5x =-25 atunci x este…..    

                                       

3) Fie f : R  R, f (x) =ax +4a, aR

a) Daca , atunci a = ………..

b) Pentru a = 2 ,  = ………. .

c) Pentru a =2, valoarea de adevar a propozitiei ” este…………

4) Fie M un punct exterior planului (ABC) astfel incat MA(ABC).

    a) Daca MDBC, D  (BC), atunci AD…..BC.

    b) Proiectia segmentului [MB] pe planul (ABC) este…. .

    c) Daca MD=16 cm si MA= 8  cm, atunci sinusul unghiului format de planele (MBC) si (ABC) este egal cu…. .

 

Subiectul  II   42 puncte (Se cer rezolvari complete)

1. Fie f : R  R, f (x) = (5 + 3m)x + 4

a) Sa se detremine m  R astfel încat A(1; 2m  1) Gf.

b) Pentru m = 1 sa se verifice daca f(x + 2) +2f( 2x +1) = f( 3x + 5), oricare ar fi x real.

 

 

2. Ioana, Dana si Vlad au împreuna 26 ani. Ioana si  Dana sunt gemene, iar Vlad are 12 ani.

 a) Calculati varsta Danei

 b) Calculati cu cati ani în urma varsta lui Vlad era egala cu suma varstelor Danei si Ioanei.

 

 

3. a)  Desenati o piramida patrulatera regulata

Piramida patrulater  regulata  VABCD, de varf V si baza  ABCD , are muchia bazei de 12 cm si înaltimea de 8 cm. Punctul M este mijlocul laturii BC.

b) Calculati aria laterala  a piramidei.

c) Fie punctul N situat pe latura AB astfel încat NB = 3 AN.Calculati aria triunghiului MND.

d) Calculati valoarea tangentei unghiului determinat de planele (VAM ) si         ( ABC) .

 

 

 

 

 

 

Varianta 5

Clasa a VIII-a

 

Se acorda 10 puncte din oficiu.Timp de lucru:2 ore.

 

Subiectul  I  48 puncte  (Completati doar rezultatele)

1) Se considera ecuatia + (m+1)x + (- 1) = 0, unde x, m .

    a) Ecuatia nu are solutii reale pentru m apartine intervalului ….. .

    b) Ecuatia are solutii reale pentru m……. .

    c) Pentru m=0, aproximarea prin lipsa la zecimi a solutiilor ecuatiei este egala cu……sau….. .

 

2) a) Solutia ecuatiei (3- )x =  - 3 este egala cu…….. .

    b) Scrisa sub forma de interval, multimea A = {x  | |x-1|≤ 2} este…… .

    c) Numerele natural care sunt solutii ale inecuatiei |x-1|≤ 2 sunt… .

 

3) a) Fie  f ; g : R  R, f (x) = mx + 2 si g(x) = 3 x + n si A(2; 2) este punctul de intersectie al celor doua grafice atunci m =…… si n = ………….

b) Fie f : R  R, f (x) = 2x  6. Punctul de pe graficul functiei f, care are coordonatele opuse este P(……,……..)

c) Fie f : R  R, f (x)= . Valoarea de adevar a propozitiei:  este patrat perfect” este …………..

 

 

4) a) Paralelipipedul dreptunghic cu dimensiunile bazei de 6 cm, 10 cm si înaltimea de 12 cm are aria laterala egala cu ……..cm2.

b) Tetraedrul regulat cu aria totala de  cm2 are suma muchiilor de ……..cm.

c) Prisma dreapta care are baza un triunghi echilateral de latura 15 cm si aria laterala egala cu 360 cm2 are muchia laterala de ………cm.

 

Subiectul  II   42 puncte (Se cer rezolvari complete)

1. a) Fie functia f : R  R, f (x) =a x + b care îndeplineste conditia

f(x+1) = x   2.

a) Determinati formula functiei.

b) Reprezentati grafic functia f.

c) Aflati masura unghiului format de graficul functiei si axa ordonatelor.

 

2.  a) Rezolvati in multimea numerelor reale ecuatia :                                                      

     b)  Am depus la banca o suma de bani  cu dobanda de 40% pe an.Dupa un an am luat de la banca 70 lei.Ce suma am avut initial ?                                                                                  

 

 

3.

a) Desenati un trunchi de piramida  triunghiulara  regulata

  Fie trunchiul de piramida  triunghiulara  regulata  ABCABC’ . Punctele O si O’ sunt centrele de greutate ale bazelor ABC , respectiv ABC’, AB = 8 cm, AB’= 6 cm si OO’ = 4 cm. Calculati:

b) Aria total  a trunchiului;

c) Volumul piramidei din care provine trunchiul;

d) Distanta de la punctul O la planul (BCC )

 

 

 

 

 

Varianta 6

Clasa a VIII-a

 

Se acorda 10 puncte din oficiu.Timp de lucru:2 ore.

 

Subiectul  I  48 puncte  (Completati doar rezultatele)

1) a) Solutia reala a ecuatiei x + 2 = - 8 este ……

b) Daca  5 este solutie a ecuatiei ax  2 =3 + a, atunci a este egal cu ………

c) Solutia naturala a ecuatiei ( x + 4 )( x  10) =0 este …….

 

2) a) Dintre perechile de numere (4, 7) si ( 6 ; 2) solutie a ecuatiei 2x  3y = 6 este   …………

b) Solutia sistemului  este (….;… )

c) Solutia ecuatiei 3(x+1)  4(x  2) = 12 este ………..

 

3) a) Stiind ca ecuatiile 6x + 2a = 4a  6 si 3x  1 = 2x + 3 sunt echivalente în R atunci a = ……….

b) Daca media aritmetica a numerelor x si 12 este 24 , atunci x este egal cu……

c) Daca volumul unei prisme este de 720 cm3 si aria bazei de 90 cm2, atunci înaltimea prismei este de ………….cm.

 

4) Fie VABC o piramida triunghiulara regulata cu latura bazei AB = 9cm si înaltimea de 12 cm.

a) Apotema piramidei are lungimea de … cm

b) Aria laterala a piramidei este egala cu ... cm2

c) Volumul piramidei este egal cu ... cm3                

.

 

Subiectul  II   42 puncte (Se cer rezolvari complete)

1. Suma a doua numere este 77. Împartind unul dintre numere la celalalt se obtine catul 7 si restul 2. Aflati numerele.

 

2. a) Reprezentati în sistem de coordonate perpendiculare dreapta solutiilor ecuatiei 4x 2y +20 = 0.

b)      Aflati aria triunghiului format de dreapta solutiilor ecuatiei de la punctul a) cu axele sistemului.

c)      Calculati distanta de la originea sistemului la dreapta solutiilor ecuatiei de la punctul a).

 

3.

a)    Desenati un cub

Cubul ABCDABCD’ are muchia AB = 6 cm.

b) Calculati aria triunghiului ABD .

c) Aratat i cadreptele AC’ si AO sunt perpendiculare, unde ACBD= {O} .

 

 

 

 

                       

 

Varianta 7

Clasa a VIII-a

 

Se acorda 10 puncte din oficiu.Timp de lucru:2 ore.

 

 

Subiectul  I  48 puncte  (Completati doar rezultatele)

1.a) Calculand multimea solutiilor ecuatiei +5x-6=0,se obtine {…..}.

   b) Solutia ecuatiei x + =3 este egala cu…. .

    c) Multimea solutiilor reale ale  inecuatiei  este …….

 

2) a) Solutia sistemului  este (….;… )

b) Daca sistemul de la punctul a) este echivalent cu sistemul   atunci a = ….. si b =….

c) Media aritmetica a numerelor a si b gasite la punctul b) este …………..

 

3) a) Solutia în multimea numerelor reale a ecuatiei |x-2| = 4 este  ……….

b) Media aritmetica a trei numere naturale impare consecutive este 63. Cel mai mare dintre ele este ……

c) Daca |x-3|<2, atunci numarul real x se afla în intervalul ...      

 

4) Fie ABCD un romb si M un punct exterior planului (abc) astfel incat MBBD si MOAC, unde {O}=ACBD.

  a) Dreapta MB este….. pe planul (ABC).

   b) Proiectia tringhiului MAC pe planul (ABC) este…. .

   c) Daca aria tringhiului MAC este egala cu 48  si aria tringhiului BAC este egala cu 24 , atunci masura unghiului plan corespunzator diedrului determinat de planele (MAC) si (BAC) este egala cu…..

 

 

 

 

 

 

Subiectul  II   42 puncte (Se cer rezolvari complete)

 

1.  Se considera functia f :R→R , f(x)= x+2

     a) Reprezentati grafic functia                                                                                                                  

     b) Determinati valoarea numarului m stiind ca punctul M(m,2) se afla pe reprezentarea grafica a funtiei                                                                                                                                                     

 

2.  O persoana a cheltuit într-o zi  dintr-o suma de bani. A doua zi a cheltuit din rest si înca 350 lei. Constata ca mai are 250 lei.

a) Aflati suma initiala.

b) Cat a cheltuit a doua zi?

 

3.

a)  Desenati o piramida patrulatera  regulata

Piramida patrulatera  regulata  SABCD, cu baza ABCD, are înaltimea de 6  cm si muchia bazei de 12 cm.

b) Calculati volumul piramidei.

c) Calculati valoarea sinusului unghiului determinat de doua  fete laterale alaturate.

d) Calculati distanta de la punctul P, mijlocul în laltimii piramidei, la planul (SBC) .

 

 

 

 

 

Varianta 8

Clasa a VIII-a

 

Se acorda 10 puncte din oficiu.Timp de lucru:2 ore.

 

Subiectul  I  48 puncte  (Completati doar rezultatele)

1)  a) Solutia in  a ecuatiei 3(2-x)+5 = 14 este…… .

      b) Solutia in  a ecuatiei   x2+ 4x+ 4=0 este….. .

      c) Solutia in  a ecuatiei 0,3x-5,3=1 este…… .

 

2) a) Solutia inecuatiei , în R este………….

b) Suma elementelor multimii A = este egala cu …….

c) Solutia inecuatiei  este …………..

 

3) a) Cardinalul multimii B =  este ……….

b) Tetraedrul regulat cu muchia de 12 cm are aria totala de ………cm2.

c) Piramida patrulatera regulata care are apotema bazei de 8 cm si înaltimea de 24 cm are volumul de ………cm3.

 

4) a) Volumul unui cub este de 125 cm3. Muchia cubului este egala cu ... cm

b) Trunchiul de piramida triunghiulara regulata dreapta cu latura bazei mari de 10 cm, muchia laterala de 5 cm si apotema de 3 cm, are aria laterala de  …….. cm2.

c) Trunchiul de piramida patrulatera regulata dreapta cu L = 20 cm, h = 8 cm si at = 10 cm are aria totala de ………cm2.

 

 

          Subiectul  II   42 puncte (Se cer rezolvari complete)

 

1. Un test are 20 probleme. Pentru fiecare problema rezolvata corect se acorda 20 puncte, iar pentru fiecare problema rezolvata gresit se scad 10 puncte.

a) Cate raspunsuri corecte a dat un elev daca a obtinut 220 puncte?

b) Aflati numarul minim de rezolvari corecte pe care ar trebui sa le faca un elev pentru a depasi 350 de puncte.

 

2. Fie expresiile: E(x) =    si

a)Aratati ca E(x) = .

      b)Aflati Z astfel încat E(a)Z.

 

3.

 a)  Desenati o piramida patrulatera  regulata

O piramida  patrulatera  regulata  VABCD, de varf V si baza  ABCD, are latura bazei de 12 cm si în ltimea de 6 cm.

b) Calculati aria lateral  a piramidei.

c) Calculati valoarea cosinusului unghiului determinat de o muchie lateral  cu planul bazei.

d) Calculati distanta de la punctul H, mijlocul înaltimii piramidei, la planul (VAB) .

 

 

 

 

 

                                                     Varianta 9

       Clasa a VIII-a

 

Se acorda 10 puncte din oficiu.Timp de lucru:2 ore.

 

Subiectul  I  48 puncte  (Completati doar rezultatele)

1) Se considera functia f :R→R , f(x)= x  2 si sistemul de axe  xOy

     a) Valoarea functiei  f pentru x=0 este……                                                                                              

     b) Rezultatul calculului  f(2) +f(-2)  este…….                                                                                        

     c)  Intersectia reprezentarii  grafice a functiei f cu axa Ox este punctul…… 

                                         

2) a) Daca sistemului  are solutia ( 6 ; 4 ), atunci ( m; n) = (……; …….)

b) Solutia naturala a ecuatiei x(x  8) + 3(x  8) = 0 este ……….

c) Media aritmetica a numerelor 41 si 35 este …………..

 

3) a) Piramida patrulatera regulata dreapta cu înaltimea de 16 cm si apotema de 20 cm are perimetrul bazei de ……….. cm.

b) Aria totala a unui tetraedru regulat cu suma muchiilor de 36 cm este de …………….cm2.

c) Piramida triunghiulara regulata dreapta cu aria totala de cm 2 si aria laterala de cm2 are latura bazei egala cu ……..cm.

 

4)    Se considera o prisma triunghiulara ABCA’B’C’  cu toate muchiile congruente, Ab=6cm.

 a) Daca M este un punct oarecare pe muchia [AA’], atunci distanta de la M la planul (BCC’) este egala cu….cm.

b) Aria lateral a prismei este egala cu……..

c) Volumul prismei este egal cu…...

 

Subiectul  II   42 puncte (Se cer rezolvari complete)

1. Pretul unui obiect s-a micsorat cu 20%. La un interval de timp noul pret s-a majorat cu 20% ajungand la 24000 lei.

a) Care a fost pretul initial?

b) Care a fost pretul dupa ieftinire?

 

2.  a) Rezolvati in multimea numerelor reale ecuatia

     

   b) Gasiti solutia sistemului .

3.

a)  Desenati o piramida patrulatera  regulata

Piramida patrulatera  regulata  VABCD, cu varful V si baza ABCD, are latura bazei de 12 cm si înaltimea de 8 cm.

b) Calculati aria total  a piramidei.

c) Calculati valoarea sinusului unghiului determinat de muchiile laterale VB si VD.

d) Fie H un punct situat pe înaltimea [VO] a piramidei. Stiind ca  distanta de la punctul H la planul ( ABC) este egal  cu distanta de la punctul H la planul (VAB) , calculati lungimea segmentului OH.

 

 

 

 

                                                      

 

 

Varianta 10

Clasa a VIII-a

 

Se acorda 10 puncte din oficiu.Timp de lucru:2 ore.

 

Subiectul  I  48 puncte  (Completati doar rezultatele)

1) Se considera ecuatia -2x+3y=17, unde x, y Є R.

    a) Valoarea lui a pentru care perechea (a; -1) este solutie a ecuatiei este egala cu…… .

    b) Perechea (-1, m) este solutie a ecuatiei pentru m egal cu……. .

    c) Pentru y=3, solutia ecuatiei in x este egala cu ……. .

 

2) a) Solutia sistemului  este punctul A (……; …….)

b)  si    .

 Punctului  de intersectie a graficelor  celor doua  functii sunt este P(…,…)

 c) Daca suma a doua numere este  90 si diferenta lor este 30, atunci scazand  din dublul numarului mare numarul mic obtinem…………..

 

3) a) Multimea solutiilor ecuatiei  este S = {…}

b) Rezolvand în R, inecuatia 2x  3 ≤ 2 are solutie intervalul…..

c) Valoarea de adevar a propozitiei  ( 6; 2) este solutie a ecuatiei 3x  y = 12” este ………..

 

4) a) Un trunchi de piramida triunghiulara regulata are laturile bazelor de 16 cm si 12 cm si înaltimea de 6 cm. Volumul trunchiului este de .. ……cm3.

b) Într-o piramida patrulatera regulata se face o sectiune printr-un plan paralel cu baza la  din înaltime fata de varf. Latura bazei este de 12 cm. Aria  sectiunii este egala cu ……..cm2.

c) Trunchiul de piramida triunghiulara regulata cu laturile bazelor de 12 cm si 6 cm si volumul de cm3 are inaltimea  de ………cm.

 

 

 

 

Subiectul  II   42 puncte (Se cer rezolvari complete)

 

1. Daca într-o sala de clasa se asaza cate un elev într-o banca, raman 6 elevi în picioare. Daca  se asaza cate doi elevi într-o banca raman patru banci libere si într-o banca se asaza un singur elev.

a) Cate banci sunt în clasa?

b) Cati elevi sunt în clasa?

 

2. Se considera functiile

a)    Sa se determine functiile stiind ca punctul de intersectie a graficelor celor doua functii este  ;

b)   Sa se traseze graficele celor doua functii în acelasi sistem de axe de coordonate

 

3. 

a) Desenati o piramida triunghiulara  regulata

Piramida triunghiulara  regulata  ABCD , de baza  ABC are AB = 8 cm si AD = 5 cm. Punctele M si N sunt mijloacele segmentelor AB, respectiv AD .

b) Calculati aria total  a piramidei ABCD .

c) Calculati valoarea sinusului unghiului determinat de dreptele MN si DC.

d) Calculati lungimea proiectiei segmentului [MN] pe planul (DBC) .

 

 

 

                            

 

Varianta 11

Clasa a VIII-a

 

Se acorda 10 puncte din oficiu.Timp de lucru:2 ore.

 

Subiectul  I  48 puncte  (Completati doar rezultatele)

1) a) Solutiile ecuatiei x2- 3x = 0 sunt ….. si ….. .

    b) Solutiile ecuatiei     x2 - 3 = 0 sunt……si…… .

    c) Solutiile ecuatiei x2 + 2x + 1= 4 sunt…….si…... .

 

2) a) Solutia sistemului  este...

     b) Solutia ecuatiei |x-4|+|4-x| + 02009 = 0 este …

     c) Solutia reala a inecuatiei x+1< 2 este …           

 

3) Se da functia f : R  R, f (x) =  x  + 1.

a) Valoarea functiei pentru x =   2 este egala cu …..

b) Daca 2 f(x) + 5 = 7, atunci x este egal cu …….

c) Daca f(x)  0, atunci x se afla în intervalul……..

 

4. Se da paralelipipedul dreptunghic ABCDA’B’C’D’ cu AB= 6 cm, BC= 8 cm si AA’= 10 cm.

 a) Lungimea diagonalei paralelipipedului este egala cu…… cm.

 b) Aria totala a paralelipipedului esteegala cu …...                                 c) Volumul paralelipipedului este egal cu…..

 

 

Subiectul  II   42 puncte (Se cer rezolvari complete)

 

1.        a) Rezolvati sistemul     

b)      Aratati ca numarul m = a2+10a+26 este pozitiv

 

 

 

 

2. Fie  f : R  R, f (x) = x  4.

a) Sa se reprezinte grafic functia f.

b) Deteminati punctele de intersectie ale reprezentarii grafice cu axele de coordonate.

c) Aflati aria triunghiului determinat de graficul functiei cu axele sistemului.

d) Calculati distanta de la originea sistemului de coordonate la graficul functiei.

 

3. 

a) Desenati o piramida patrulatera  regulata

O piramida  patrulatera  regulata  VABCD, de baz  ABCD, are VA = 10 cm. Fie punctul M mijlocul segmentului BC si VM = 5 3 cm.

b) Calculati masura unghiului determinat de dreapta VB cu planul bazei (ABC).

c) Fie punctul T situat pe segmentul DC astfel încat VT + TM  sa  aiba  lungimea minima . Calculati

lungimea segmentului TC

 

 

 

 

 

 

           

 

 

 

         Varianta 12

           Clasa a VIII-a

 

         

 

Se acorda 10 puncte din oficiu.Timp de lucru:2 ore.

 

Subiectul  I  48 puncte  (Completati doar rezultatele)

1)  a) Solutiile ecuatiei - 3x = 0 sunt ….. si ….. .

      b) Solutiile ecuatiei  - 3 = 0 sunt……si…… .

      c) Solutiile ecuatiei  + 2x + 1= 4 sunt…….si…... .

2) a) Fie  f, g : R  R, f (x) =  2x + 0,5 si g(x) = Solutia inecuatiei f(x) ≤ 2g(x) + 1 este intervalul……..

b) Daca f : A  R,  f(x) = 2x +1 si Im f = { -1; 0; 1; 3}, atunci Gf = {……..}

c) f : R  R, f (x) = 2 x  + b si f(3) = 18, atunci b = …………

 

3) a) Solutia sistemului  este...

     b) Solutia ecuatiei |2x-4|= 0 este …

     c) Solutia reala a inecuatiei x+4< 2 este …     

 

4. In varful A al patratului ABCD cu lungimea laturii de 6 cm se construieste perpendicular pe planul patratului pe care se considera un punct M astfel incat MA=6.

     a) Distanta de la M la diagonal BD este egala cu……cm.

     b) Aria proiectie triunghiului MBD pe planul Patratului este egala cu…...

      c) MAsura unghiului plan corespunzator diedrului format de planele (MBD) si (ABD) este egal cu……. .

 

Subiectul  II   42 puncte (Se cer rezolvari complete)

 

1.        Într-un bloc sunt 76 camere în 28 apartamente cu doua si cu trei camere.

a)      Calculati numarul apartamentelor cu 2 camere

b)      Cat la suta din numarul apartamentelor cu trei camere reprezinta numarul apartamentelor cu doua camere.

 

2. Fie  f : R  R, f (x) = x  3.

a) Rezolvati, în R,  ecuatia 2f(x) + 2 = f(x+1).

b) Sa se calculeze numerele: S = f(1) + f(2) + f(3) + ….+ f(17) si P = f(1)  f(2)  f(3)  …. f(17).

 

3.

a) Desenati o piramida patrulatera  regulata

Fie VABCD o piramida  patrulatera  regulat  cu baza ABCD . Latura bazei este egala  cu 12  cm si apotema piramidei este egal  cu 12 cm.

b) Calculati volumul piramidei VABCD .

c) Calculati masura unghiului determinat de planul unei fete laterale

d) Se sectioneaza  piramida cu un plan paralel cu planul bazei astfel încat aria lateral  a trunchiului de piramida  obtinut sa  fie 75% din aria lateral  a piramidei initiale. Calculati distanta de la planul bazei

piramidei initiale la planul de sectiune.

 

 

 

 

 

 

 

                      

Varianta 13

Clasa a VIII-a

 

Se acorda 10 puncte din oficiu.Timp de lucru:2 ore.

 

Subiectul  I  48 puncte  (Completati doar rezultatele)

1) a) Daca x = +1 este solutie a ecuatiei mx  3 = 3, m , atunci m este egal cu….. .

b) Solutia naturala a ecuatiei -x-6=0 este egala cu….. .

c) Multimea solutiilor reale ale inecuatiei x + 3 1 este intervalul….. .

 

2)  a) Solutia ecuatiei (2- )x =  - 2 este egala cu…….. .

    b) Scrisa sub forma de interval, multimea A = {x  | |x-1|≤ 1} este…… .

    c) Numerele natural care sunt solutii ale inecuatiei |x-1|≤ 0 sunt… .

 

 

3) a) Daca f : R  R, f (x) =2x  1, atunci punctul de pe grafic cu coordonate egale este M(….; ….)

b) Daca f : R  R, f (x) =3 x + 4, valoarea de adevar a propozitiei  N( 2; 11)  Gf” este………. .

c) Fie f, g : R  R, f(x) =  2x + 1 si g(x) = 4x  11. Coordonatele punctului de intersectie a graficelor functiilor f si g sunt (….  ; …..).

 

4)   Fie cubul ABCDA’B’C’D’ cu AB=5cm.

      a) Cosinusul unghiului format de A’b cu planul (ABC) este egal cu…. .

      b) Sinusul unghiului plan corespunzator diedrului format de planele (D’AC) si (ABC) este egal cu…. .

       c) Aria proiectiei triunghiului AD’C pe planul (ABC) este egala cu….

 

Subiectul  II   42 puncte (Se cer rezolvari complete)

1. a) Determinati formula functiei f : R  R, f (x) =a x + b stiind ca             A( 1;  6) si B(1;  2 ) apartin graficului functiei.

b) Pentru a = 2 si b =  4 reprezentati grafic functia.

c) Aflati perimetrul triunghiului format de graficul functiei cu axele sistemului.

 

2. a) Solutia sistemului  este...

     b) Rezolvati în R inecuatia (2

 

3. 

a)    Desenati un paralelipipedul dreptunghic

Fie ABCDA'B'C'D' paralelipipedul dreptunghic în care laturile bazei ABCD sunt AB = 30 cm  si AD = 40 cm, iar înaltimea AA'= 24 cm.

b) Calculati aria laterala a paralelipipedului.

c) Calculati distanta de la punctul A' la dreapta BC.

d) Calculati masura unghiului determinat de planele ( ACD)  si ( ACD')

 

 

 

 

 

 

 

 

.

 

 

 

 

Varianta 14

Clasa a VIII-a

 

Se acorda 10 puncte din oficiu.Timp de lucru:2 ore.

 

 

Subiectul  I  48 puncte  (Completati doar rezultatele)

1.   Se considera ecuatiile ax+2 = 0 si 4x + b = 0, unde a si b sunt numere reale diferite de zero.

     a) Daca numarul natural 1 este solutie a celor doua ecuatii, atunci a este egal cu …. si b este egal cu…… .

     b) Valorile intregi ale lui a, pentru care solutia ecuatiei ax + 2 = 0 este numar intreg sunt…. .

     c) Valorile natural ale lui a si b pentru care cele doua ecuatii au aceeasi solutie sunt egale cu…..si…. .

 

2) Se da functia f : R  R, f (x) =2 x  2.

a) Punctul de coordonate egale care apartine graficului functiei f este  A(……,……..)

b) Distanta de la originea sistemului de axe la punctul de coordonate ( 2; f(2) ) este ………

c) Valoarea de adevar a propozitiei: M (-1; 0) Gf” este …………..

 

3) Fie f : R  R, f (x) =ax +4a, aR

a) Daca , atunci a = ………..

b) Pentru a = 2 ,  = ………. .

c) Rezolvati ecuata f(1)= -5

4)  a) Aria laterala a piramidei patrulatere regulate cu latura bazei de 12 cm si înaltimea de 8 cm este egala cu … cm2.

b) Aria totala a unui cub cu muchia 12 cm este ... cm2

c)Un trunchi de piramida triunghiulara regulata are latura bazei mari de 24 cm si latura bazei mici de 6 cm. Raportul ariilor bazelor trunchiului are valoarea egala cu ...       

 

Subiectul  II   42 puncte (Se cer rezolvari complete)

1. Fie f : R  R, f (x) = (5  3m)x + 4

a) Sa se detremine m  R astfel încat A(1; 2m  1) Gf.

b) Pentru m=2 sa se verifice daca f(x + 2) +2f( 2x +1) = f( 3x  4), oricare ar fi x real.

 

2)  Pentru a confectiona 7 veste si 5 sarafane, un croitor are nevoie de 7 m de stofa, iar pentru a confectiona o veste si 5 sarafane de acelasi fel are nevoie de 4 m de stofa.

  a) Pentru o vesta sunt necesari …..m stofa.

  b) Pentru un sarafan sunt necesari ……m stofa.

  c) Din 5 m de stofa se pot confectiona……veste si ……sarafane.

 

3.

a) Desenati un paralelipiped dreptunghic

Suma tuturor muchiilor unui paralelipiped dreptunghic ABCDAB CD este egal  cu 60 cm, iar diagonala AC = 9 cm.

b) Calculati aria totala  a paralelipipedului dreptunghic ABCDABCD .

c)Stiind ca  AB = BC = 4 cm, calculati perimetrul dreptunghiului ACCA.

d) Stiind ca  AC BD = {O} si ca  AB = BC = 4 cm, calculati valoarea tangentei unghiului determinat de dreapta OA cu planul (DBB)

 

 

 

 

 

 

 

Varianta 15

Clasa a VIII-a

 

Se acorda 10 puncte din oficiu.Timp de lucru:2 ore.

 

Subiectul  I  48 puncte  (Completati doar rezultatele)

1) a) Multimea solutiilor ecuatiei =2, unde x   este egala cu….. .

     b) Perechile de numere intregi x si y, x  y, cu proprietatea ca =5, sunt…. .

     c) Multimea solutiilor ecuatiei (x-)(x+) = 0 este egala cu….. .

2) a) Fie  f ; g : R  R, f (x) = mx + 2 si g(x) = 3 x + n si A(1;1) este punctul de intersectie al celor doua grafice atunci m =…… si n = ………….

b) Fie f : R  R, f (x) =x  6. Punctul de pe graficul functiei f, care are coordonatele opuse este P(……,……..)

c) Fie f : R  R, f (x)= . Valoarea de adevar a propozitiei:  este patrat perfect” este …………..

 

3)a) Solutia sistemului  este perechea ...

b) Forma cea mai simpla a expresiei E(x)=

c) Solutia inecuatiei este intervalul ...  

 

4) a) Paralelipipedul dreptunghic cu dimensiunile bazei de 3 cm, 5 cm si înaltimea de 6 cm are aria laterala egala cu ……..cm2.

b) Tetraedrul regulat cu aria totala de  cm2 are suma muchiilor de ……..cm.

c) Prisma dreapta care are baza un triunghi echilateral de latura 10 cm si aria laterala egala cu 360 cm2 are muchia laterala de ………cm.

 

 

Subiectul  II   42 puncte (Se cer rezolvari complete)

1 Pretul unui obiect este de 100 lei si se majoreaza cu 10 %.

  a) Noul pret al obiectului este egal cu …. lei.

  b) Daca noul pret se ieftineste cu 10% pretul obiectului este egal cu….lei.

     c) Daca pretul dupa ieftinire este egala cu 99 lei, marirea care trebuie aplicata acestui pretca noul prêt sa fie 198 lei este egal cu…%.

 

2. Stabiliti daca puntele urmatoare  A( 1; 3); B(0; 2) ; C( 1; 1)  sunt coliniare.

 

3.

a) Desenati o piramida triunghiulara  regulata

Piramida triunghiulara  regulata  VABC are VA = 10 cm si raza cercului circumscris bazei ABC de 4 cm.

b) Aratati ca  AB = 12 cm.

c) Fie punctul E mijlocul laturii AB. Calculati valoarea sinusului unghiului determinat de dreptele VE si BC.

d) Calculati perimetrul minim al triunghiului MBC, unde punctul M apartine muchiei AV.

 

 

 

 

                           

Varianta 16

Clasa a VIII-a

 

Se acorda 10 puncte din oficiu.Timp de lucru:2 ore.

 

Subiectul  I  48 puncte  (Completati doar rezultatele)

1) a) Solutia reala a ecuatiei x + 1 = -4 este ……

b) Daca  3 este solutie a ecuatiei ax  2 =8 + 7a, atunci a este egal cu ………

c) Solutia naturala a ecuatiei ( x + 9 )( x  9) =0 este …….

 

2) a) Dintre perechile de numere (-3, 9) si (3 ; 0) solutie a ecuatiei 2x  3y = 6 este   …………

b) Solutia sistemului  este (….;… )

c) Solutia ecuatiei 3(x+1)  4(x  2) = 6 este ………..

3) a) Stiind ca ecuatiile 3x + a = 2a  3 si 3x  1 = 2x + 3 sunt echivalente în R atunci a = ……….

b) Daca media aritmetica a numerelor x si 12 este 10 , atunci x este egal cu……

c) Daca volumul unei prisme este de 540 cm3 si aria bazei de 90 cm2, atunci înaltimea prismei este de ………….cm.

 

4) Se da piramida patrulatera regulata dreapta cu latura bazei de 12 cm si înaltimea de 8 cm.

a) Muchia laterala are lungimea de ……cm.

b) Apotema piramidei are lungimea de   …….. cm.

c) Distanta de la centrul de greutate al bazei la o fata laterala este de ….cm.

 

Subiectul  II   42 puncte (Se cer rezolvari complete)

1.

   Se da expresia E(x)=  unde xR\{0;4}

a)      Aratati ca E(x)= , oricare ar fi unde xR\{0;4}

b)     Aflati  x  pentru care E(x)>0

c)      Aflati a pentru care E(a) Z

 

2. a) Reprezentati în sistem de coordonate perpendiculare dreapta solutiilor ecuatiei 2x  y +10 = 0.

b)Aflati aria triunghiului format de dreapta solutiilor ecuatiei de la punctul cu axele sistemului.

c) Calculati distanta de la originea sistemului la dreapta solutiilor ecuatiei de la punctul a).

 

3.

a) Desenati o piramida patrulatera  regulata

Piramida patrulatera  regulata VABCD de varf V si baza  ABCD, are muchia bazei de 10 cm si îna ltimea

de 12 cm.

b) Calculati volumul piramidei.

c) La ce distanta  de varful piramidei trebuie dus un plan paralel cu planul bazei, astfel încat raportul dintre volumul piramidei mici si volumul trunchiului de piramida  obtinut sa  fie egal cu 

d) Calculati valoarea tangentei unghiului determinat de planele (VAC) si (VAB)

 

 

 

 

 

Varianta 17

Clasa a VIII-a

 

Se acorda 10 puncte din oficiu.Timp de lucru:2 ore.

 

Subiectul  I  48 puncte  (Completati doar rezultatele)

 

1) a) Solutia intreaga a ecuatiei -2x+1=5 este ...

b) Solutia naturala a ecuatiei  este ………

c) Ecuatia ,  are solutia S = …….

 

2) a) Solutia sistemului  este (….;… )

b) Daca sistemul de la punctul a) este echivalent cu sistemul   atunci a = ….. si b =….

c) Media geometrica a numerelor 5 si 125 este …………..

 

3) a) Cel mai mic numar natural de trei cifre care impartit la 20 da restul 13 este  ……….

b) Media aritmetica a trei numere naturale impare consecutive este 23. Cel mai mare dintre ele este ……

c) Numarul de muchii al unui tetraedru regulat este de ...

4) a) O piramida triunghiulara regulata dreapta are latura bazei de si muchia laterala de 6 cm. Apotema piramidei este de …...cm.

b) Aria totala a unui tetraedru regulat este de cm2. Volumul tetraedrului este de ……..cm3.

c) O piramida patrulatera regulata dreapta cu latura bazei de cm si înaltimea de 6 cm are masura unghiului format de o fata laterala cu planul bazei de ………o.

 

 

 

Subiectul  II   42 puncte (Se cer rezolvari complete)

 

1.    Fie x =  

a)     Numarul x = ...

b)      Numarul x este cuprins între numerele întregi consecutive ...

c)      Partea fractionara a lui x este ...

 

2.  O persoana a cheltuit într-o zi  dintr-o suma de bani. A doua zi a cheltuit din rest si înca 350 lei. Constata ca mai are 150 lei.

a) Aflati suma initiala.

b) Cat a cheltuit a doua zi?

 

3.a) Desenati o piramida triunghiulara regulata dreapta.

Piramida triunghiulara  regulata  VABC, de varf V si baza  ABC, are AB = 24 cm si VA =12  cm. Punctul

M este mijlocul laturii BC.

b) Calculati volumul piramidei VABC

c) Calculati distanta de la punctul M la muchia AV.

d) Calculati valoarea tangentei unghiului determinat de planele (AVM) si (AVB).

 

 

 

 

                            

Varianta 18

Clasa a VIII-a

 

Se acorda 10 puncte din oficiu.Timp de lucru:2 ore.

 

Subiectul  I  48 puncte  (Completati doar rezultatele)

1) a) Solutia reala a ecuatiei  3(x+3)=9 este egala cu ………                                                                      

     b) Daca  3x - 2≤ 4  atunci  numarul real x se afla in intervalul……..                                                      

     c) Daca  5x+10 =-25 atunci x este…..         

 

2) a) Solutia inecuatiei , în R este………….

b) Suma elementelor multimii A = este egala cu …….

c) Solutia inecuatiei  este …………..

 

3) a)  Solutia sistemului este ...

 b) Fie f : R  R, f (x) =2x-1. Pentru a=2 si b=3 media aritmetica a numerelor f(a) si f(b) este ...

c) Fie f : R  R, f (x) =3x-2. Daca  A(2,m) se afla pe graficul functiei, atunci m este ...

 

4) a) Trunchiul de piramida hexagonala regulata dreapta cu apotema de 7,5 cm latura bazei mici de 2 cm si aria laterala de 270 cm 2 are latura bazei mari de ……cm.

b) Trunchiul de piramida triunghiulara regulata dreapta cu latura bazei mari de 30 cm, muchia laterala de 15 cm si apotema de 9 cm, are aria laterala de  …….. cm2.

c) Trunchiul de piramida patrulatera regulata dreapta cu L = 10 cm, h = 4 cm si at = 5 cm are aria totala de ………cm2.

 

Subiectul  II   42 puncte (Se cer rezolvari complete)

 

     1. Într-un sistem de axe perpendiculare xOy se considera punctele A(1;2) si B(4;8).

a)      Determinati f : R→R a carei reprezentare grafica este dreapta AB.

b)      Calculati lungimea segmentului AB.

c)      Determinati coordonatele punctului care este mijlocul segmentului AB.

 

2.  25 de caiete si 12 creioane costa 78 de lei iar 5 caiete si 10 creioane costa 27 de lei.

a) Cat costa un caiet si cat  costa un creion?

b) Avand la dispozitie 30 de lei si urmarind achizitionarea unui numar cat mai mare posibil de obiecte, sa se afle cate caiete si creioane se pot cumpara.

 

3.a) Desenati un trunchi piramida patrulatera regulata.

Un trunchi de piramida  patrulatera  regulata  ABCDA’B’C’D’ cu baza mare ABCD si baza mic

A’B’C’D’ , are AB = 8 cm si A’B’ = 4 cm. Muchia laterala  face cu planul bazei mari un unghi de 60o   .

b) Aratati ca  lungimea înaltimii trunchiului de piramida  este egal  cu 2  cm.

c) Calculati aria totala  a trunchiului. d) Calculati distanta de la punctul A la planul (DCC’)

 

 

 

 

 

Varianta 19

Clasa a VIII-a

 

Se acorda 10 puncte din oficiu.Timp de lucru:2 ore.

 

Subiectul  I  48 puncte  (Completati doar rezultatele)

1) Fie ecuatia

a) Solutia ecuatiei este egala cu (….,…..)

b) Valoarea expresiei este egala cu …………..

c) Solutia ecuatiei

2) a) Daca sistemului  are solutia ( 3 ; 2 ), atunci ( m; n) = (……; …….)

b) Solutia naturala a ecuatiei x(x  2) + 3(x  2) = 0 este ……….

c) Media aritmetica a numerelor 21 si 35 este …………..

 

3) Se considera functia f : R→ R , f(x) = -2x +1.

a)      f  = ……………..

b)      Solutia inecuatiei f(x)  5 este ………….

c)      f(1) + f(2) + f(3) +……+ f (100) este ……………….

 

4) a) Un trunchi de piramida patrulatera regulata dreapta are diagonala de 9 cm si laturile bazelor de 7 cm si 5 cm. Volumul trunghiului este de .. ……cm3.

b) Un trunchi de piramida triunghiulara regulata dreapta are latura bazei mari de cm, latura bazei mici de  cm si înaltimea de 6 cm. Atunci raportul dintre volumul trunchiului si volumul piramidei din care provine trunchiul este de……..

c) Un trunchi de piramida patrulatera regulata dreapta are laturile bazelor de 12 cm si 8 cm, iar aria sectiunii diagonale de cm2. Aria laterala a piramidei din care provine trunchiul de piramida este de ………cm2.

 

Subiectul  II   42 puncte (Se cer rezolvari complete)

1. Pretul unui obiect s-a micsorat cu 20%. La un interval de timp noul pret s-a majorat cu 20% ajungand la 264000 lei.

a) Care a fost pretul initial?

b) Care a fost pretul dupa ieftinire?

 

2.  Fie functiile f : R →R  , f(x) =  si g : R→R , g(x) = (1-m)x + 3m.

a)      Aratati ca n = f este un numar natural.

b)      Detereminati numarul real m pentru care punctul D(-5;-1) apartine reprezentarii grafice a functiei g.

c)      Pentru m =1 , rezolvati ecuatia

 

3. a) Desenati un cub ABCDA’B’C’D’

În interiorul cubului ABCDA'B'C'D' se considera  punctul M astfel încat MABCD sa  fie o piramida patrulatera  regulata . Punctele O si O' sunt centrele fetelor ABCD , respectiv A'B'C'D' .

b) Calculati masura unghiului format de dreptele A'C' si BD.

c) Aratati ca  punctele O, M si O' sunt coliniare.

d) Pentru AB = 6 cm, calculati lungimea segmentului OM astfel încat apotema piramidei regulate MABCD sa aiba  aceeasi lungime ca si muchia cubului.

 

 

 

 

 

 

 

 

                                              Varianta 20

Clasa a VIII-a

 

Se acorda 10 puncte din oficiu.Timp de lucru:2 ore.

 

Subiectul  I  48 puncte  (Completati doar rezultatele)

1)a) Solutia reala a ecuatiei  este egala cu ……………

ii) Ecuatiile 2x  6 = 0 si 3x  a = 5 sunt echivalente. Valoarea lui a este ……….

b) Daca , atunci ………

 

2) Se considera functia f : R→ R , f(x) = x +b.

a)      Daca punctul A (1,3) apartine graficului functiei f atunci b = ……….

b)      Daca b = 2 atunci f(2008) =………….

c)      Daca b = 2 atunci [f(2)] = ………….

 

3) a) Multimea solutiilor ecuatiei  este S = {…}

b) Rezolvand în R, inecuatia 2x  1 ≤ 3 are solutie intervalul…..

c) Valoarea de adevar a propozitiei  ( 0; -2) este solutie a ecuatiei x  5y = 10” este ………..

 

4) a) Un trunchi de piramida triunghiulara regulata are laturile bazelor de 8 cm si 6 cm si înaltimea de 6 cm. Volumul trunchiului este de .. ……cm3.

b) Într-o piramida patrulatera regulata se face o sectiune printr-un plan paralel cu baza la  din înaltime fata de varf. Latura bazei este de 12 cm. Aria  sectiunii este egala cu ……..cm2.

c) Trunchiul de piramida triunghiulara regulata cu laturile bazelor de 6 cm si 3 cm si volumul de cm3 are inaltimea  de ………cm.

 

Subiectul  II   42 puncte (Se cer rezolvari complete)

1. Daca într-o sala de clasa se asaza cate un elev într-o banca, raman 10 elevi în picioare. Daca  se asaza cate doi elevi într-o banca raman doua banci libere si într-o banca se asaza un singur elev.

a) Cate banci sunt în clasa?

b) Cati elevi sunt în clasa?

 

2.  Se da functia f : R →R , f(x) = ax + b, unde a si b sunt numere reale.

a)    Pentru a = 2 si b = -4 , reprezentati grafic functia f.

b) Pentru a = 2 si b = -4, aflati valorile numarului real m stiind ca punctul M(2m+1;m+1) se afla pe graficul functiei f.

3. 

a) Desenati o piramida triunghiulara regulata dreapta.

Piramida triunghiulara  regulata  VABC are baza ABC. Muchia bazei AB = 12 cm si muchia laterala

AV = 12 cm. Punctele M si N sunt mijloacele muchiilor BC, respectiv AV.

b) Calculati volumul piramidei.

 c) Calculati masura unghiului determinat de dreptele MN si AC.

d) Fie O centrul de greutate al bazei si MN VO = {G}. Aratati ca  punctul G se afla  la distanta  egala

de cele patru fete ale piramidei.

 

 

 

 

 

 

Solutii variante

Culegerea este versiune BETA asa ca s-ar putea gasi mici greseli in enunturi si rezolvari

 

www.MateInfo.ro

 

 

Varianta 1.

 

1

a

b

5

c

2

a

S={(5;1)}

b

S={0;6}

c

x

3

a

{-2;0; 1; 2; 5}

b

1

c

0; 1

4

a

450

b

900

c

600

 

II.

1

2

3

BGf

 

b) 190

c) x{-5;-3;-1;1}

c) 45o

d)

 

 

 

 

 

 

Rezolvare problema 3 (Varianta 1)

 

 

Varianta 2

 

I.

1

a

X=-1 sau x=5

b

[-1;5]

c

{2;3;4}

2

a

-3

b

0

c

(-1;3)

3

a

b

c

2

4

a

b

c

4,5

II.

1

2

3

a) a = 2; b =  3

 

c) a {1;2}

Indicatie: atentie la xR\{-5;-2; ;5}

c) 72

d) 15

 

 

 

 

 

Rezolvare problema 3 (Varianta 2)

 

 

 

 

 

Varianta 3

I

1

a

-1

b

-2/3

c

1

2

a

1

b

2

c

3

3

a

b

[-5,-1]

c

{-5,-4.-3,-2,-1}

4

a

36

b

c

 

II.

1

2

3

b) x=y=

a)

c) A = 25

b) 288 cm3

d) 60o

 

 

 

 

 

Rezolvare problema 3 (Varianta 3)

 

 

 

Varianta 4

I.

1

a

[1;5]

b

(1;-2)

c

7

2

a

2

b

c

-5

3

a

2

b

136

c

F

4

a

perpendicular

b

[AB]

c

II.

1

2

3

a) m =  10

b) A”

 

a) Dana si Ioana au 7 ani

b) x=2 (în urma cu 2 ani)

b)240

c)63

d)

 

 

Rezolvare problema 3 (Varianta4)

 

 

Varianta 5

I

 

1

a

,-1)

b

[-1;+

c

0,2 sau -1,2

2

a

-1

b

[-1;3]

c

{0;1;2}

3

a

b

(2;2)

c

F

4

a

384

b

30

c

8

 

II

1

2

3

a) a = 1; b =1  3; f(x) = x  3

c) 45o

 

a)     x=17;

b)     50 lei

c) V =

d) sin B =

 

 

Rezolvare problema 3 (Varianta5)

 

Varianta 6I

1

a

-10

b

c

10

2

a

 

b

c

3

a

15

b

36

c

8

4

a

M mijocul lui [AB]; OM = ; VM =